The next article comes from two weblog posts by Drew Breunig: “How Lengthy Contexts Fail” and “Find out how to Repair Your Contexts.”
Managing Your Context Is the Key to Profitable Brokers
As frontier mannequin context home windows proceed to develop,1 with many supporting as much as 1 million tokens, I see many excited discussions about how long-context home windows will unlock the brokers of our goals. In any case, with a big sufficient window, you possibly can merely throw all the things right into a immediate you would possibly want—instruments, paperwork, directions, and extra—and let the mannequin maintain the remaining.
Lengthy contexts kneecapped RAG enthusiasm (no want to seek out the perfect doc when you possibly can match all of it within the immediate!), enabled MCP hype (join to each instrument and fashions can do any job!), and fueled enthusiasm for brokers.2
However in actuality, longer contexts don’t generate higher responses. Overloading your context could cause your brokers and purposes to fail in stunning methods. Contexts can turn into poisoned, distracting, complicated, or conflicting. That is particularly problematic for brokers, which depend on context to collect info, synthesize findings, and coordinate actions.
Let’s run by the methods contexts can get out of hand, then evaluation strategies to mitigate or totally keep away from context fails.
Context Poisoning
Context poisoning is when a hallucination or different error makes it into the context, the place it’s repeatedly referenced.
The DeepMind staff referred to as out context poisoning within the Gemini 2.5 technical report, which we broke down beforehand. When taking part in Pokémon, the Gemini agent would sometimes hallucinate, poisoning its context:
An particularly egregious type of this subject can happen with “context poisoning”—the place many elements of the context (objectives, abstract) are “poisoned” with misinformation concerning the recreation state, which might typically take a really very long time to undo. In consequence, the mannequin can turn into fixated on attaining unattainable or irrelevant objectives.
If the “objectives” part of its context was poisoned, the agent would develop nonsensical methods and repeat behaviors in pursuit of a objective that can’t be met.
Context Distraction
Context distraction is when a context grows so lengthy that the mannequin over-focuses on the context, neglecting what it discovered throughout coaching.
As context grows throughout an agentic workflow—because the mannequin gathers extra info and builds up historical past—this gathered context can turn into distracting relatively than useful. The Pokémon-playing Gemini agent demonstrated this drawback clearly:
Whereas Gemini 2.5 Professional helps 1M+ token context, making efficient use of it for brokers presents a brand new analysis frontier. On this agentic setup, it was noticed that because the context grew considerably past 100k tokens, the agent confirmed a bent towards favoring repeating actions from its huge historical past relatively than synthesizing novel plans. This phenomenon, albeit anecdotal, highlights an vital distinction between long-context for retrieval and long-context for multistep, generative reasoning.
As a substitute of utilizing its coaching to develop new methods, the agent turned fixated on repeating previous actions from its intensive context historical past.
For smaller fashions, the distraction ceiling is far decrease. A Databricks examine discovered that mannequin correctness started to fall round 32k for Llama 3.1-405b and earlier for smaller fashions.
If fashions begin to misbehave lengthy earlier than their context home windows are stuffed, what’s the purpose of tremendous massive context home windows? In a nutshell: summarization3 and reality retrieval. If you happen to’re not doing both of these, be cautious of your chosen mannequin’s distraction ceiling.
Context Confusion
Context confusion is when superfluous content material within the context is utilized by the mannequin to generate a low-quality response.
For a minute there, it actually appeared like everybody was going to ship an MCP. The dream of a strong mannequin, related to all your companies and stuff, doing all of your mundane duties felt inside attain. Simply throw all of the instrument descriptions into the immediate and hit go. Claude’s system immediate confirmed us the way in which, because it’s principally instrument definitions or directions for utilizing instruments.
However even when consolidation and competitors don’t gradual MCPs, context confusion will. It turns on the market could be such a factor as too many instruments.
The Berkeley Operate-Calling Leaderboard is a tool-use benchmark that evaluates the power of fashions to successfully use instruments to reply to prompts. Now on its third model, the leaderboard reveals that each mannequin performs worse when supplied with a couple of instrument.4 Additional, the Berkeley staff, “designed situations the place not one of the supplied features are related…we anticipate the mannequin’s output to be no operate name.” But, all fashions will sometimes name instruments that aren’t related.
Looking the function-calling leaderboard, you possibly can see the issue worsen because the fashions get smaller:

A putting instance of context confusion could be seen in a current paper that evaluated small mannequin efficiency on the GeoEngine benchmark, a trial that options 46 completely different instruments. When the staff gave a quantized (compressed) Llama 3.1 8b a question with all 46 instruments, it failed, regardless that the context was properly inside the 16k context window. However after they solely gave the mannequin 19 instruments, it succeeded.
The issue is, when you put one thing within the context, the mannequin has to concentrate to it. It could be irrelevant info or pointless instrument definitions, however the mannequin will take it into consideration. Giant fashions, particularly reasoning fashions, are getting higher at ignoring or discarding superfluous context, however we regularly see nugatory info journey up brokers. Longer contexts allow us to stuff in additional data, however this capacity comes with downsides.
Context Conflict
Context conflict is while you accrue new info and instruments in your context that conflicts with different info within the context.
It is a extra problematic model of context confusion. The dangerous context right here isn’t irrelevant, it straight conflicts with different info within the immediate.
A Microsoft and Salesforce staff documented this brilliantly in a current paper. The staff took prompts from a number of benchmarks and “sharded” their info throughout a number of prompts. Consider it this manner: Typically, you would possibly sit down and kind paragraphs into ChatGPT or Claude earlier than you hit enter, contemplating each needed element. Different instances, you would possibly begin with a easy immediate, then add additional particulars when the chatbot’s reply isn’t passable. The Microsoft/Salesforce staff modified benchmark prompts to seem like these multistep exchanges:

All the data from the immediate on the left facet is contained inside the a number of messages on the appropriate facet, which might be performed out in a number of chat rounds.
The sharded prompts yielded dramatically worse outcomes, with a mean drop of 39%. And the staff examined a spread of fashions—OpenAI’s vaunted o3’s rating dropped from 98.1 to 64.1.
What’s occurring? Why are fashions performing worse if info is gathered in levels relatively than abruptly?
The reply is context confusion: The assembled context, containing the whole thing of the chat trade, incorporates early makes an attempt by the mannequin to reply the problem earlier than it has all the data. These incorrect solutions stay current within the context and affect the mannequin when it generates its closing reply. The staff writes:
We discover that LLMs typically make assumptions in early turns and prematurely try and generate closing options, on which they overly rely. In easier phrases, we uncover that when LLMs take a unsuitable flip in a dialog, they get misplaced and don’t get better.
This doesn’t bode properly for agent builders. Brokers assemble context from paperwork, instrument calls, and from different fashions tasked with subproblems. All of this context, pulled from numerous sources, has the potential to disagree with itself. Additional, while you connect with MCP instruments you didn’t create there’s a better likelihood their descriptions and directions conflict with the remainder of your immediate.
Learnings
The arrival of million-token context home windows felt transformative. The flexibility to throw all the things an agent would possibly want into the immediate impressed visions of superintelligent assistants that might entry any doc, join to each instrument, and preserve excellent reminiscence.
However, as we’ve seen, greater contexts create new failure modes. Context poisoning embeds errors that compound over time. Context distraction causes brokers to lean closely on their context and repeat previous actions relatively than push ahead. Context confusion results in irrelevant instrument or doc utilization. Context conflict creates inner contradictions that derail reasoning.
These failures hit brokers hardest as a result of brokers function in precisely the situations the place contexts balloon: gathering info from a number of sources, making sequential instrument calls, partaking in multi-turn reasoning, and accumulating intensive histories.
Fortuitously, there are answers!
Mitigating and Avoiding Context Failures
Let’s run by the methods we will mitigate or keep away from context failures totally.
Every thing is about info administration. Every thing within the context influences the response. We’re again to the previous programming adage of “rubbish in, rubbish out.” Fortunately, there’s loads of choices for coping with the problems above.
RAG
Retrieval-augmented technology (RAG) is the act of selectively including related info to assist the LLM generate a greater response.
As a result of a lot has been written about RAG, we’re not going to cowl it right here past saying: It’s very a lot alive.
Each time a mannequin ups the context window ante, a brand new “RAG is lifeless” debate is born. The final vital occasion was when Llama 4 Scout landed with a 10 million token window. At that dimension, it’s actually tempting to assume, “Screw it, throw all of it in,” and name it a day.
However, as we’ve already coated, when you deal with your context like a junk drawer, the junk will affect your response. If you wish to be taught extra, right here’s a new course that appears nice.
Device Loadout
Device loadout is the act of choosing solely related instrument definitions so as to add to your context.
The time period “loadout” is a gaming time period that refers back to the particular mixture of talents, weapons, and tools you choose earlier than a stage, match, or spherical. Often, your loadout is tailor-made to the context—the character, the extent, the remainder of your staff’s make-up, and your individual ability set. Right here, we’re borrowing the time period to explain choosing probably the most related instruments for a given job.
Maybe the only technique to choose instruments is to use RAG to your instrument descriptions. That is precisely what Tiantian Gan and Qiyao Solar did, which they element of their paper “RAG MCP.” By storing their instrument descriptions in a vector database, they’re capable of choose probably the most related instruments given an enter immediate.
When prompting DeepSeek-v3, the staff discovered that choosing the appropriate instruments turns into vital when you will have greater than 30 instruments. Above 30, the descriptions of the instruments start to overlap, creating confusion. Past 100 instruments, the mannequin was just about assured to fail their check. Utilizing RAG strategies to pick fewer than 30 instruments yielded dramatically shorter prompts and resulted in as a lot as 3x higher instrument choice accuracy.
For smaller fashions, the issues start lengthy earlier than we hit 30 instruments. One paper we touched on beforehand, “Much less is Extra,” demonstrated that Llama 3.1 8b fails a benchmark when given 46 instruments, however succeeds when given solely 19 instruments. The problem is context confusion, not context window limitations.
To handle this subject, the staff behind “Much less is Extra” developed a technique to dynamically choose instruments utilizing an LLM-powered instrument recommender. The LLM was prompted to cause about “quantity and kind of instruments it ‘believes’ it requires to reply the consumer’s question.” This output was then semantically searched (instrument RAG, once more) to find out the ultimate loadout. They examined this methodology with the Berkeley Operate-Calling Leaderboard, discovering Llama 3.1 8b efficiency improved by 44%.
The “Much less is Extra” paper notes two different advantages to smaller contexts—lowered energy consumption and velocity—essential metrics when working on the edge (that means, operating an LLM in your cellphone or PC, not on a specialised server). Even when their dynamic instrument choice methodology failed to enhance a mannequin’s end result, the ability financial savings and velocity positive aspects have been well worth the effort, yielding financial savings of 18% and 77%, respectively.
Fortunately, most brokers have smaller floor areas that solely require a couple of hand-curated instruments. But when the breadth of features or the quantity of integrations must broaden, all the time think about your loadout.
Context Quarantine
Context quarantine is the act of isolating contexts in their very own devoted threads, every used individually by a number of LLMs.
We see higher outcomes when our contexts aren’t too lengthy and don’t sport irrelevant content material. One technique to obtain that is to interrupt our duties up into smaller, remoted jobs—every with its personal context.
There are many examples of this tactic, however an accessible write-up of this technique is Anthropic’s weblog publish detailing its multi-agent analysis system. They write:
The essence of search is compression: distilling insights from an enormous corpus. Subagents facilitate compression by working in parallel with their very own context home windows, exploring completely different elements of the query concurrently earlier than condensing a very powerful tokens for the lead analysis agent. Every subagent additionally supplies separation of considerations—distinct instruments, prompts, and exploration trajectories—which reduces path dependency and permits thorough, unbiased investigations.
Analysis lends itself to this design sample. When given a query, a number of brokers can establish and individually immediate a number of subquestions or areas of exploration. This not solely quickens the data gathering and distillation (if there’s compute out there), nevertheless it retains every context from accruing an excessive amount of info or info not related to a given immediate, delivering larger high quality outcomes:
Our inner evaluations present that multi-agent analysis techniques excel particularly for breadth-first queries that contain pursuing a number of unbiased instructions concurrently. We discovered {that a} multi-agent system with Claude Opus 4 because the lead agent and Claude Sonnet 4 subagents outperformed single-agent Claude Opus 4 by 90.2% on our inner analysis eval. For instance, when requested to establish all of the board members of the businesses within the Data Know-how S&P 500, the multi-agent system discovered the right solutions by decomposing this into duties for subagents, whereas the single-agent system failed to seek out the reply with gradual, sequential searches.
This strategy additionally helps with instrument loadouts, because the agent designer can create a number of agent archetypes with their very own devoted loadout and directions for easy methods to make the most of every instrument.
The problem for agent builders, then, is to seek out alternatives for remoted duties to spin out onto separate threads. Issues that require context-sharing amongst a number of brokers aren’t notably suited to this tactic.
In case your agent’s area is in any respect suited to parallelization, make sure you learn the entire Anthropic write-up. It’s glorious.
Context Pruning
Context pruning is the act of eradicating irrelevant or in any other case unneeded info from the context.
Brokers accrue context as they hearth off instruments and assemble paperwork. At instances, it’s value pausing to evaluate what’s been assembled and take away the cruft. This may very well be one thing you job your principal LLM with or you possibly can design a separate LLM-powered instrument to evaluation and edit the context. Or you possibly can select one thing extra tailor-made to the pruning job.
Context pruning has a (comparatively) lengthy historical past, as context lengths have been a extra problematic bottleneck within the pure language processing (NLP) area previous to ChatGPT. Constructing on this historical past, a present pruning methodology is Provence, “an environment friendly and strong context pruner for query answering.”
Provence is quick, correct, easy to make use of, and comparatively small—only one.75 GB. You’ll be able to name it in a couple of strains, like so:
from transformers import AutoModel
provence = AutoModel.from_pretrained("naver/provence-reranker-debertav3-v1", trust_remote_code=True)
# Learn in a markdown model of the Wikipedia entry for Alameda, CA
with open('alameda_wiki.md', 'r', encoding='utf-8') as f:
alameda_wiki = f.learn()
# Prune the article, given a query
query = 'What are my choices for leaving Alameda?'
provence_output = provence.course of(query, alameda_wiki)
Provence edited the article, chopping 95% of the content material, leaving me with solely this related subset. It nailed it.
One might make use of Provence or an identical operate to cull paperwork or your complete context. Additional, this sample is a powerful argument for sustaining a structured5 model of your context in a dictionary or different kind, from which you assemble a compiled string prior to each LLM name. This construction would turn out to be useful when pruning, permitting you to make sure the primary directions and objectives are preserved whereas the doc or historical past sections could be pruned or summarized.
Context Summarization
Context summarization is the act of boiling down an accrued context right into a condensed abstract.
Context summarization first appeared as a instrument for coping with smaller context home windows. As your chat session got here near exceeding the utmost context size, a abstract could be generated and a brand new thread would start. Chatbot customers did this manually in ChatGPT or Claude, asking the bot to generate a brief recap that will then be pasted into a brand new session.
Nonetheless, as context home windows elevated, agent builders found there are advantages to summarization in addition to staying inside the whole context restrict. As we’ve seen, past 100,000 tokens the context turns into distracting and causes the agent to depend on its gathered historical past relatively than coaching. Summarization may help it “begin over” and keep away from repeating context-based actions.
Summarizing your context is simple to do, however laborious to excellent for any given agent. Understanding what info needs to be preserved and detailing that to an LLM-powered compression step is vital for agent builders. It’s value breaking out this operate as its personal LLM-powered stage or app, which lets you gather analysis information that may inform and optimize this job straight.
Context Offloading
Context offloading is the act of storing info exterior the LLM’s context, normally by way of a instrument that shops and manages the info.
This is likely to be my favourite tactic, if solely as a result of it’s so easy you don’t consider it would work.
Once more, Anthropic has a great write-up of the approach, which particulars their “assume” instrument, which is mainly a scratchpad:
With the “assume” instrument, we’re giving Claude the power to incorporate a further considering step—full with its personal designated area—as a part of attending to its closing reply… That is notably useful when performing lengthy chains of instrument calls or in lengthy multi-step conversations with the consumer.
I actually admire the analysis and different writing Anthropic publishes, however I’m not a fan of this instrument’s identify. If this instrument have been referred to as scratchpad
, you’d know its operate instantly. It’s a spot for the mannequin to put in writing down notes that don’t cloud its context and can be found for later reference. The identify “assume” clashes with “prolonged considering” and needlessly anthropomorphizes the mannequin… however I digress.
Having an area to log notes and progress works. Anthropic reveals pairing the “assume” instrument with a domain-specific immediate (which you’d do anyway in an agent) yields vital positive aspects: as much as a 54% enchancment towards a benchmark for specialised brokers.
Anthropic recognized three situations the place the context offloading sample is helpful:
- Device output evaluation. When Claude must fastidiously course of the output of earlier instrument calls earlier than appearing and would possibly have to backtrack in its strategy;
- Coverage-heavy environments. When Claude must comply with detailed pointers and confirm compliance; and
- Sequential resolution making. When every motion builds on earlier ones and errors are expensive (typically present in multi-step domains).
Takeaways
Context administration is normally the toughest a part of constructing an agent. Programming the LLM to, as Karpathy says, “pack the context home windows good,” neatly deploying instruments, info, and common context upkeep, is the job of the agent designer.
The important thing perception throughout all of the above techniques is that context will not be free. Each token within the context influences the mannequin’s habits, for higher or worse. The large context home windows of contemporary LLMs are a strong functionality, however they’re not an excuse to be sloppy with info administration.
As you construct your subsequent agent or optimize an current one, ask your self: Is all the things on this context incomes its maintain? If not, you now have six methods to repair it.
Footnotes
- Gemini 2.5 and GPT-4.1 have 1 million token context home windows, massive sufficient to throw Infinite Jest in there with loads of room to spare.
- The “Lengthy kind textual content” part within the Gemini docs sum up this optmism properly.
- Actually, within the Databricks examine cited above, a frequent approach fashions would fail when given lengthy contexts is that they’d return summarizations of the supplied context whereas ignoring any directions contained inside the immediate.
- If you happen to’re on the leaderboard, take note of the “Dwell (AST)” columns. These metrics use real-world instrument definitions contributed to the product by enterprise, “avoiding the drawbacks of dataset contamination and biased benchmarks.”
- Hell, this complete record of techniques is a powerful argument for why you must program your contexts.